Event Count Analysis

Tse-min Lin
<tml@austin.utexas.edu>

Department of Government
The University of Texas at Austin
Types of Event Count

Finite Event Count

- Example: the number of positive responses to n survey items
- Model: binomial regression, (extended) beta-binomial regression
- Method: MLE

(Potentially) Infinite Event Count

- Example: outbreaks of war in a given year; annual deaths from domestic conflict in a given country
- Model: Poisson regression, negative binomial regression
- Method: MLE
Problems of Using a Linear Model for Event Count Data

- Wrong DGP: The dependent variable follows a non-normal, special distribution.
- Violation of classical assumptions (normality, homoscedasticity)
- OLS estimators are not BLUE.
In this lecture, I will …

- Use a running example to walk you through the process of picking a particular distribution for event count analysis.
- Start from the Bernoulli distribution, and then progress to the Binomial distribution, Extended Beta-Binomial Distribution, Poisson distribution, the Negative Binomial Distribution, and their corresponding regression models.
- Show how event count models can be estimated with MLE.
- Compare (finite) event count models and IRT.
The Running Example

- The problem will be determining the number of positive responses a respondent gives to n binary items in an opinion survey administered to m respondents.
- The response of a typical individual i to a typical binary item j is represented by the random variable X_{ij} which takes values on 0 or 1.
- The probability of an event occurring for individual i on item j is denoted by π_{ij}, i.e., $\Pr(X_{ij} = 1) = \pi_{ij}$.
- The total number of positive responses of a typical individual i is represented by the random variable $Y_i = \sum_{j=1}^{n} X_{ij}$.
Case 1: n=1 and $\pi_{ij} = \pi$ for all i, j

Pr($Y_i = 1$) = Pr($X_{i1} = 1$) = $\pi_{i1} = \pi$
Pr($Y_i = 0$) = Pr($X_{i1} = 0$) = $1 - \pi_{i1} = 1 - \pi$

This is the Bernoulli distribution with the parameter π:

Pr($Y_i = y_i$) = $\pi^{y_i} (1 - \pi)^{1-y_i}$ \hspace{0.5cm} $y_i = 0,1$

$E(Y_i) = \pi$
$Var(Y_i) = \pi(1-\pi)$

Assumptions

1) There is only one item in the survey.
2) π is constant from individual to individual.
Case 2: n is finite and $\pi_{ij}=\pi$ for all i, j

$$\Pr(Y_i = y_i \mid n, \pi) = \binom{n}{y_i} \pi^{y_i} (1 - \pi)^{n-y_i} \quad y_i = 0...n$$

$$E(Y_i) = n\pi$$
$$Var(Y_i) = n\pi(1 - \pi)$$

This is the binomial distribution with parameters n and π.

For example, if there are three items in the survey (i.e., n=3), then

$$\Pr(Y_i = y_i \mid n, \pi) = \binom{3}{y_i} \pi^{y_i} (1 - \pi)^{3-y_i} \quad y_i = 0...3$$

Assumptions

1) There is a finite and discrete number of items.
2) π is constant from item to item.
3) Having a “1” on an item is independent of having a “1” on any other item for the same individual.
4) π is constant from individual to individual.

Note: For individual i, Assumptions (2) and (3) imply that the Bernoulli random variables $X_{i1}, X_{i2}, \ldots, X_{in}$ are identically and independently distributed (i.i.d.).
Case 3: n is finite and \(\pi_{ij} = \pi_i \)

\(Y_i \) follows the Binomial distribution for individual \(i \):

\[
\Pr(Y_i = y_i \mid n, \pi_i) = \binom{n}{y_i} \pi_i^{y_i} (1 - \pi_i)^{n-y_i}, \quad y_i = 0 \ldots n
\]

If \(\pi_i \) is a random variable following the beta distribution (Gary King’s version; see Appendix 1) with parameters \(\pi \) and \(\gamma \):

\[
f_{\beta}(\pi_i \mid \pi, \gamma) = \frac{\Gamma(\gamma \pi^{-1} + (1 - \pi) \gamma^{-1})}{\Gamma(\gamma \pi^{-1}) \Gamma(1 - \gamma \pi^{-1})} \pi_i^{\gamma \pi^{-1} - 1} (1 - \pi_i)^{(1 - \pi) \gamma^{-1} - 1} \quad \text{with } E(\pi_i) = \pi
\]

then the joint density of \(y_i \) and \(\pi_i \) are

\[
f(y_i, \pi_i \mid n, \pi, \gamma) = \Pr(Y_i = y_i \mid n, \pi_i) f_{\beta}(\pi_i \mid \pi, \gamma)
\]

We then calculate the marginal density of \(y_i \) by collapsing this joint distribution over \(\pi_i \). The result is the extended beta-binomial distribution:

\[
f_{ebb}(y_i \mid n, \pi, \gamma) = \int_{-\infty}^{\infty} f(y_i, \pi_i \mid n, \pi, \gamma) d\pi_i
\]

The distribution of \(Y_i \) is then

\[
\Pr(Y_i = y_i \mid n, \pi, \gamma) = f_{ebb}(y_i \mid n, \pi, \gamma)
\]

\[
= \frac{n!}{y_i!(n-y_i)!} \prod_{j=0}^{y_i-1} (\pi + \gamma) \prod_{j=0}^{n-y_i-1} (1 - \pi + \gamma) / \prod_{j=0}^{n-1} (1 + \gamma)
\]

with

\[
E(Y_i) = n \pi \quad 0 \leq \pi \leq 1
\]

\[
Var(Y_i) = n \pi (1 - \pi) \left[1 + (n - 1) \gamma (1 + \gamma)^{-1} \right] \quad \gamma \geq \max \{-\pi(n-1)^{-1}, -(1 - \pi)(n-1)^{-1}\}
\]

Assumptions

1) There is a finite and discrete number of items in the survey.
2) \(\pi \) is constant from item to item for the same individual whose responses to the items are independent – i.e., the Bernoulli random variables are i.i.d. for the same individual – but changes from individual to individual randomly according to the beta distribution.
Case 4: n is infinite and \(\pi_{ij} = \pi \)

\[
\lim_{n \to \infty} \Pr(Y_i = y_i \mid n, \pi) = \lim_{n \to \infty} \binom{n}{y_i} \pi^{y_i} (1 - \pi)^{n-y_i} = \frac{e^{-\lambda} \lambda^{y_i}}{y_i!}
\]

where \(\lambda = n\pi \) is a constant. That is, as \(n \to \infty, \pi \to 0 \) such that \(n\pi \) remains a constant.

This is the Poisson distribution with parameter \(\lambda \):

\[
\Pr(Y_i = y_i \mid \lambda) = \frac{e^{-\lambda} \lambda^{y_i}}{y_i!}, \quad y_i = 0, \infty
\]

\[
E(Y_i) = \lambda
\]

\[
Var(Y_i) = \lambda
\]

Assumptions

1) Only one event per item (i.e., “point” in a continuum).
2) \(n \) is infinite. There are many, many items.
3) \(\pi \) is constant from item to item for the same individual whose responses to the items are independent – i.e., the Bernoulli random variables are i.i.d. for the same individual – and constant from individual to individual.
4) \(\pi \) is infinitesimally small such that \(\lambda = n\pi \) is finite.

Example

Lewis F. Richardson, in his article “The Distribution of Wars in Time” (*Journal of Royal Statistical Society*, 107:242-250) compiled the following data on outbreaks of war from 1500 to 1931 A.D.

<table>
<thead>
<tr>
<th>Number of outbreaks in the year</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of such years</td>
<td>223</td>
<td>142</td>
<td>48</td>
<td>15</td>
<td>4</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>Binomial model</td>
<td>216</td>
<td>150</td>
<td>52</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>432</td>
</tr>
<tr>
<td>Poisson model</td>
<td>216</td>
<td>150</td>
<td>52</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>432</td>
</tr>
</tbody>
</table>

- Suppose every year has 365 days and each day can have at most one outbreak of war. Suppose further that whether a war breaks out on each day of the year is an iid Bernoulli process. Under these assumptions, the binomial model with \(n=365 \) and \(\pi=0.00189625 \) will be a good model to predict the number of outbreaks of war in a year.
- Richardson fitted a Poisson model with \(\lambda=0.69213 \).
Case 5: n is infinite and $\pi_{ij} = \pi_i$

Let $\lambda_i = n\pi_i$. Then $Y_i \sim \text{Poisson}(\lambda_i)$.

If λ_i is a random variable following the gamma distribution (Gary King’s version; see Appendix 2) with parameters λ and σ^2:

$$f(\lambda_i | \lambda, \sigma^2) = \frac{\lambda_i^{\frac{\lambda}{\sigma^2} - 1} e^{-\lambda_i^2 / (\sigma^2)}}{\Gamma(\frac{\lambda}{\sigma^2}) \left(\sigma^2 - 1\right)^{\frac{\lambda}{\sigma^2}}} \quad \text{with } E(\lambda_i) = \lambda$$

then the joint density of y_i and λ_i are

$$f(y_i, \lambda_i | \lambda, \sigma^2) = f_p(y_i | \lambda_i) f_j(\lambda_i | \lambda, \sigma^2)$$

We then calculate the marginal density of y_i by collapsing this joint distribution over λ_i.

The result is the negative binomial distribution:

$$f_{\text{nb}}(y_i | \lambda, \sigma^2) = \int_0^\infty f_j(y_i, \lambda_i | \lambda, \sigma^2) d\lambda_i$$

The distribution of Y_i is then

$$\text{Pr}(Y_i = y_i | \lambda, \sigma^2) = f_{\text{nb}}(y_i | \lambda, \sigma^2)$$

$$= \frac{\Gamma\left(\frac{\lambda}{\sigma^2} + y_i\right)}{y_i! \Gamma\left(\frac{\lambda}{\sigma^2}\right)} \left(\frac{\sigma^2 - 1}{\sigma^2}\right)^{\frac{\lambda}{\sigma^2} - 1} \left(\frac{\sigma^2}{\sigma^2 - 1}\right)^{y_i}, \quad \lambda > 0; \quad \sigma^2 > 1$$

$$E(Y_i) = \lambda$$

$$Var(Y_i) = \lambda \sigma^2$$

Assumptions

1) There are an infinite number of items.
2) λ_i is not constant but a random variable following the gamma distribution.
Event Count Regression Models

In the above cases, if the expected values (e.g., \(\pi\) of the Bernoulli, binomial, and extended beta binomial, and \(\lambda\) of the Poisson and negative binomial) are parameterized as varying from individual to individual as a function of the characteristics of the individuals, the resulting model will be probit/logit, binomial regression, extended beta binomial regression, Poisson regression, and negative binomial regression.

Case 1a: Probit/Logit Model

Probit: \(\pi_i = \text{normal}_{cdf}(x_i' \beta) = \Phi(x_i' \beta)\)

Logit: \(\pi_i = \text{logit}_{cdf}(x_i' \beta) = \Lambda(x_i' \beta) = \frac{1}{1 + \exp(-x_i' \beta)} = \frac{\exp(x_i' \beta)}{\exp(x_i' \beta) + 1}\)

Case 2a: Binomial Regression

\(\pi_i = \Phi(x_i' \beta)\) or \(\pi_i = \Lambda(x_i' \beta)\)

Case 3a: Extended Beta Binomial Regression

\(\pi_i = \Phi(x_i' \beta)\) or \(\pi_i = \Lambda(x_i' \beta)\)

Case 4a. Poisson Regression

\(\lambda_i = \exp(x_i' \beta)\)

Case 5a. Negative Binomial Regression

\(\lambda_i = \exp(x_i' \beta)\)
Extended Beta-Binomial Regression and Negative Binomial Regression

Extended Beta-Binomial Regression

Item 1 Item 2 Item 3 ….. Item n (Discrete Dimension)

Individual 1
\[\pi_1 \pi_1 \pi_1 \pi_1 \]

Individual 2
\[\pi_2 \pi_2 \pi_2 \pi_2 \]

....

Individual m
\[\pi_m \pi_m \pi_m \pi_m \]
\[\pi_i \sim \text{beta}(\pi, \gamma) \]
\[E(\pi_i) = f(x_i' \beta) \]
\[Var(\pi_i) = f(x_i' \beta)(1 - f(x_i' \beta))\gamma/ (\gamma + 1) \]

Negative Binomial Regression

Continuous Dimension (0 to \(\infty\))

Individual 1
\[\lambda_1 \lambda_1 \lambda_1 \lambda_1 \]

Individual 2
\[\lambda_2 \lambda_2 \lambda_2 \lambda_2 \]

....

Individual m
\[\lambda_m \lambda_m \lambda_m \lambda_m \]
\[\lambda_i \sim \text{gamma}(\lambda_i | \lambda, \sigma) \]
\[E(\lambda_i) = g(x_i' \beta) \]
\[Var(\lambda_i) = g(x_i' \beta)(\sigma^2 - 1) \]
Maximum Likelihood Estimation of Event Count Models

Bernoulli Distribution

Let Y_1, Y_2, \ldots, Y_n be a random sample of Bernoulli variables with

$Y_i \sim \text{Bernoulli}(\pi)$

$f_{Y_i}(y_i \mid \pi) = \pi^{y_i} (1 - \pi)^{1-y_i}, \quad y_i = 0, 1$

The ML Estimator:

$L_i(\pi) \propto \pi^{y_i} (1 - \pi)^{1-y_i}$

$\ln L_i(\pi) = y_i \ln(\pi) + (1 - y_i) \ln(1 - \pi)$

$\ln L(\pi) = \sum_{i=1}^{n} \ln L_i(\pi) = \sum_{i=1}^{n} y_i \ln(\pi) + \sum_{i=1}^{n} (1 - y_i) \ln(1 - \pi) = \sum_{i=1}^{n} y_i \ln(\pi) + (n - \sum_{i=1}^{n} y_i) \ln(1 - \pi)$

$\frac{d \ln(L(\pi))}{d \pi} = \frac{\sum_{i=1}^{n} y_i}{\pi} - \frac{n - \sum_{i=1}^{n} y_i}{1 - \pi} = \frac{\sum_{i=1}^{n} y_i - n\pi}{\pi(1 - \pi)} = 0$

Thus, $\sum_{i=1}^{n} y_i - n\pi = 0$ and $\hat{\pi} = \frac{\sum_{i=1}^{n} y_i}{n} = \bar{y}$.

Stata Routine for Bernoulli Regression (Logit)

program define mylogit
 args lnf theta1
 tempvar pi y
 quietly gen double `pi' = 1/(1+exp(-`theta1'))
 quietly gen double `y' = $ML_y1
 quietly replace `lnf' = `y'*ln(`pi') + (1-`y')*ln(1-`pi')
end
ml model lf mylogit (y = x2 x3 x4)
ml maximize

logit y x2 x3 x4
Binomial Distribution

Let $Y_1, Y_2, ..., Y_N$ be a random sample of binomial random variables with $Y_i \sim Binomial(y_i \mid n, \pi)$

$$f_{Y_i}(y_i \mid n, \pi) = \binom{n}{y_i} \pi^{y_i} (1 - \pi)^{n-y_i}, \quad y_i = 0, 1, 2, ..., n$$

The ML estimator for π is $\hat{\pi} = \frac{\bar{y}}{n}$. That is, $n \hat{\pi} = \bar{y}$.

[Proof]

$$L_i(\pi) \propto \pi^{y_i} (1 - \pi)^{n-y_i}$$

$$\ln L_i(\pi) = y_i \ln(\pi) + (n - y_i) \ln(1 - \pi)$$

$$\ln L(\pi) = \sum_{i=1}^{N} L_i(\pi) = (\sum_{i=1}^{N} y_i) \ln(\pi) + (nN - \sum_{i=1}^{N} y_i) \ln(1 - \pi)$$

$$\frac{d \ln L(\pi)}{d \pi} = \left(\sum_{i=1}^{N} y_i \right) \left(\frac{1}{\pi} \right) + (nN - \sum_{i=1}^{N} y_i) \left(\frac{-1}{1 - \pi} \right) = \frac{(\sum_{i=1}^{N} y_i)(1 - \pi) - (nN - \sum_{i=1}^{N} y_i)\pi}{\pi(1 - \pi)} = 0$$

$$\left(\sum_{i=1}^{N} y_i \right) (1 - \pi) - (nN - \sum_{i=1}^{N} y_i)\pi = 0$$

$$\left(\sum_{i=1}^{N} y_i \right) - (\sum_{i=1}^{N} y_i)\pi - nN\pi + (\sum_{i=1}^{N} y_i)\pi = 0$$

$$\left(\sum_{i=1}^{N} y_i \right) - nN\pi = 0$$

$$nN\pi = \sum_{i=1}^{N} y_i$$

Thus, $\hat{\pi} = \frac{\sum_{i=1}^{N} y_i}{nN} = \frac{y_1 + y_2 + ... + y_N}{n} = \frac{\bar{y}}{n}$, which implies that $n \hat{\pi} = \bar{y}$.
Stata Routine for Binomial Regression

```
program define mybinomial
    args lnf theta1
    tempvar y pi
    quietly gen double `y'=$ML_y1
    quietly gen double `pi' = exp(`theta1')/(1+exp(`theta1'))
    quietly replace `lnf' = ln(comb(n,`y'))+`y'*ln(`pi') + (n-`y')*ln(1-`pi')
end
ml model lf mybinomial (y = x2 x3 x4)
ml maximize
```

Stata Routine for Beta-Binomial Regression

```
program define mybetabinomial
    args lnf theta1 theta2
    tempvar y pi gamma
    quietly gen double `y'=$ML_y1
    quietly gen double `pi' = exp(`theta1')/(1+exp(`theta1'))
    quietly gen double `gamma' = exp(`theta2')
    quietly replace `lnf' = ln(comb(n,`y'))
    local j=0
    while `j'<(n-1) {
        quietly replace `lnf' = `lnf'+ln(`pi'+`gamma'*`j') if `j'<=(`y'-1)
        quietly replace `lnf' = `lnf'+ln(1-`pi'+`gamma'*`j') if (`j'<=n-`y'-1)
        quietly replace `lnf' = `lnf'-ln(1+`gamma'*`j')
        local j=`j'+1
    }
end
ml model lf mybetabinomial (y = x2 x3 x4)()
ml maximize
```
Poisson Distribution

Let $Y_1, Y_2, ..., Y_n$ be a random sample of Poisson variables with
\[Y_i \sim \text{Poisson}(\lambda) \]
\[f_Y(y_i \mid \lambda) = \frac{e^{-\lambda} \lambda^{y_i}}{y_i!} \quad y = 0, 1, 2, ... \quad \lambda > 0 \]

Note that $E(y_i) = Var(y_i) = \lambda$.

The ML estimator for λ is $\hat{\lambda} = \bar{y}$.

Proof]
\[L_i(\lambda) = e^{-\lambda} \lambda^{y_i} \]
\[\ln(L_i(\lambda)) = -\lambda + y_i \ln(\lambda) \]
\[\ln(L(\pi)) = \sum_{i=1}^{n} L_i(\lambda) = -n \lambda + \ln(\lambda) \sum_{i=1}^{n} y_i \]
\[\frac{d \ln(L(\lambda))}{d\lambda} = -n + \frac{\sum_{i=1}^{n} y_i}{\lambda} = 0 \]

Thus, $-n \lambda + \sum_{i=1}^{n} y_i = 0$ and $\hat{\lambda}_{MLE} = \frac{\sum_{i=1}^{n} y_i}{n} = \bar{y}$.

Stata Routine for Poisson Regression

```stata
program define mypoissonreg
args lnf theta1
tempvar lambda
quietly gen double `lambda' = exp(`theta1')
quietly replace `lnf' = -`lambda'+`ML_y1'*ln(`lambda')-lnfact(`ML_y1')
end
ml model lf mypoissonreg (y= x2 x3 x4)
ml maximize
poisson y x2 x3 x4
```

16
Stata’s Implementation of Negative Binomial Regression

In Stata, the negative binomial regression is derived by reparameterizing the Poisson parameter λ as

$$\lambda_i = \mu_i \nu_i$$

with μ_i in turn reparameterized as

$$\mu_i = \exp(x_i' \beta)$$

and ν_i following the gamma distribution with $E(\nu_i) = 1$ and $Var(\nu_i) = \alpha$.

Equivalently,

$$\ln \lambda_i = \ln \mu_i \nu_i = \ln \mu_i + \ln \nu_i = x_i' \beta + \varepsilon_i$$

where $\nu_i = \exp(\varepsilon_i)$ follows the gamma distribution with $E(\nu_i) = 1$ and $Var(\nu_i) = \alpha$.

The resulting negative binomial distribution is

$$Pr(Y_i = y_i) = \frac{\Gamma\left(\frac{1}{\alpha} + y_i\right)}{y_i! \Gamma\left(\frac{1}{\alpha}\right)} \left(\frac{\alpha \mu_i}{1 + \alpha \mu_i}\right)^{y_i} \left(1 + \frac{1}{1 + \alpha \mu_i}\right)^{-\frac{1}{\alpha}}$$

with $E(Y_i) = \mu_i = \exp(x_i' \beta)$ and $Var(Y_i) = \mu_i (1 + \alpha \mu_i)$.

Thus, if $\alpha = 0$, then $Var(Y_i) = E(Y_i)$, and negative binomial distribution collapses to Poisson distribution. If $\alpha > 0$, then $Var(Y_i) > E(Y_i)$, and negative binomial distribution is justified. This is called “over-dispersion.” Therefore, testing α against zero can be used to determine whether there is over-dispersion.

Stata Command for Negative Binomial Regression

```
nbreg y x2 x3 x4
```
Poisson/Negative Binomial Regression as Log-Linear Model

Let $Y_i \sim \text{Poisson}(\lambda_i)$.

$$\Pr(Y_i = y_i \mid \lambda_i) = \frac{e^{-\lambda_i} \lambda_i^{y_i}}{y_i!} \quad y_i = 0, \infty \quad E(Y) = \lambda_i \quad \text{Var}(Y) = \lambda_i$$

Parameterizing λ_i as an exponential function of a linear combination of some covariates leads to Poisson regression:

$$\lambda_i = \exp(x_i' \beta)$$

$$\ln(\lambda_i) = \ln(E(Y_i \mid x_i)) = x_i' \beta$$

Adding a random component to the log-linear model leads to negative binomial regression:

$$\ln(\lambda_i) = \ln(E(Y_i \mid x_i)) = x_i' \beta + \epsilon_i$$

where $\epsilon_i = \exp(\epsilon_i)$ follows the gamma distribution with $E(\epsilon_i) = 1$ and $\text{Var}(\epsilon_i) = \alpha$.

Event Rate and Offset

If each unit has a (known) different exposure T_i, e.g., different length of time period of different area of space in which events take place, then

$$Z_i = \frac{Y_i}{T_i}$$

is an “event rate” variable. To model this variable, note that

$$E(Z_i \mid x_i) = \frac{E(Y_i \mid x_i)}{T_i}$$

$$\ln(E(Z_i \mid x_i)) = \ln\left(\frac{E(Y_i \mid x_i)}{T_i}\right) = \ln(E(Y_i \mid x_i)) - \ln(T_i) = x_i' \beta$$

$$\ln(E(Y_i \mid x_i)) = \ln(T_i) + x_i' \beta$$

Thus, the term $\ln(T_i)$ adjusts for exposure. It is called offset. Note that the coefficient of the term is constrained to 1. This can be done for the negative binomial regression model as well.
Appendix 1. Beta Distribution

Conventional Form

\[
f(y | a, b) = \frac{\Gamma(a + b) y^{a-1} (1 - y)^{b-1}}{\Gamma(a) \Gamma(b)} \quad 0 < y < 1 \quad a, b > 0
\]

(Note: \(\Gamma \) is a gamma function: \(\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} \, dx \))

with \(E(y) = \frac{a}{a + b}, \ Var(y) = \frac{ab}{(a + b)^2 (a + b + 1)} \).

Gary King’s Parameterization

\[
f_\beta(y | \rho, \gamma) = \frac{\Gamma(\rho \gamma^{-1} + (1 - \rho) \gamma^{-1})}{\Gamma(\rho \gamma^{-1}) \Gamma((1 - \rho) \gamma^{-1})} y^{\rho \gamma^{-1} - 1} (1 - y)^{(1 - \rho) \gamma^{-1} - 1} \quad 0 < y < 1 \quad \rho, \gamma > 0
\]

Comparing King’s expression with the conventional form gives

\[
a = \frac{\rho}{\gamma}, \ b = \frac{1 - \rho}{\gamma}
\]

Solving for \(\rho \) and \(\gamma \) gets

\[
\rho = \frac{a}{a + b}, \ \gamma = \frac{1}{a + b}
\]

Thus, for King’s distribution,

\[
E(y) = \frac{a}{a + b} = \rho, \ Var(y) = \frac{ab}{(a + b)^2 (a + b + 1)} = \frac{\rho(1 - \rho) \gamma}{\gamma + 1}
\]

King adopts the particular form of the beta distribution so that one of the parameters is the expected value.
Appendix 2. Gamma Distribution

Conventional Form

\[f(y \mid r, \lambda) = \frac{\lambda^r y^{r-1} e^{-\lambda y}}{\Gamma(r)} \quad y > 0 \quad r, \lambda > 0 \]

with \(E(y) = \frac{r}{\lambda} \), \(Var(y) = \frac{r}{\lambda^2} \)

Gary King’s Parameterization

\[f(y \mid \phi, \sigma^2) = \frac{y^{\phi(\sigma^2-1)} e^{-y(\sigma^2-1)}}{\Gamma(\phi(\sigma^2-1)) (\sigma^2-1)^{\phi(\sigma^2-1)}} \quad y > 0 \quad \phi > 0 \quad \sigma > 1 \]

Comparing King’s expression with the conventional form gives

\[r = \frac{\phi}{\sigma^2 - 1}, \lambda = \frac{1}{\sigma^2 - 1} \]

Solving for \(\phi \) and \(\sigma^2 \) gets

\[\phi = \frac{r}{\lambda}, \sigma^2 = \frac{\lambda + 1}{\lambda} \]

Thus, for King’s distribution,

\[E(y) = \frac{r}{\lambda} = \frac{\frac{\phi}{\sigma^2 - 1}}{\frac{1}{\sigma^2 - 1}} = \phi \]

\[Var(y) = \frac{r}{\lambda^2} = \frac{(\frac{r}{\lambda}) \cdot (\frac{1}{\lambda})}{\lambda} = \phi(\sigma^2 - 1) \]

King adopts the particular form of the gamma distribution so that one of the parameters is the expected value.
Appendix 3. Event Count Models vs. Item Response Theory (IRT)

IRT Models as Mixed Effect Logit Models

According to Rijmen, Tuerlinckx, De Boeck and Kuppens (2003) and De Boeck and Wilson (2004), IRT can be represented as a mixed logit model.

\[
\pi_{ij} = \frac{\exp(x_i' \beta_j + z_{ij}' \theta_i)}{1 + \exp(x_i' \beta_j + z_{ij}' \theta_i)}
\]

where \(x_i\) is a p-dimensional person-by-item covariates; \(z_{ij}\) is a q-dimensional vector of person-by-item covariates; \(\beta_j\) is a p-dimensional vector of item-specific fixed effects; and \(\theta_i\) is a q-dimensional vector of individual-specific random effects. Several special cases can be derived from this specification.

The Basic Rasch Model

If we assume \(p = q = 1\) and \(x_{ij} = z_{ij} = 1\), then

\[
\pi_{ij} = \frac{\exp(\beta_j + \theta_i)}{1 + \exp(\beta_j + \theta_i)}
\]

This is the basic Rasch model where \(\beta_j\) is the difficulty parameter of item \(j\), and \(\theta_i\) is a random variable the latent ability of individual \(i\). A simple one-parameter IRT model, the basic Rasch model is a mixed-effect logistic regression model containing no covariates but only constant terms in \(x_{ij}\) and \(z_{ij}\).

The Latent Rasch Regression Model with Individual-Specific Covariates for Fixed Effects

If we allow individual-specific covariates \(x_i\) for fixed effects in the basic Rasch model above, we derive a more general latent Rasch regression model:

\[
\pi_{ij} = \frac{\exp(x_i' \beta_j + \theta_i)}{1 + \exp(x_i' \beta_j + \theta_i)}
\]

A special case of this model is when all items share the same vector \(\beta_j\) (i.e., \(\beta_j = \beta\) for \(j = 1,2,3,...,n\)). In this case, we can drop the \(j\) subscript from \(\pi_{ij}\) to get

\[
\pi_i = \frac{\exp(x_i' \beta + \theta_i)}{1 + \exp(x_i' \beta + \theta_i)}
\]
This is a Rasch regression model for homogeneous items with both fixed effects and random effects.

The Binomial Regression Model

Based on the Rasch model for homogeneous items above, if we further remove the random effect, we get

\[\pi_i = \frac{\exp(x_i' \beta)}{1 + \exp(x_i' \beta)} \]

which happens to be the binomial regression model with

\[\Pr(Y_i = y_i) = \binom{n}{y_i} \pi_i^{y_i} (1 - \pi_i)^{n-y_i} \]

with a logit link for \(\pi_i \). Note that the constant term of the linear form \(x_i' \beta \) is the common difficulty parameter shared by all items. This shows that the binomial regression model is a special case of the latent Rasch regression model.

The Latent Rasch Regression Model vs. the Extended Beta-Binomial Model

Recall that the Rasch latent regression model is

\[\pi_{ij} = \frac{\exp(x_i' \beta_j + \theta_i)}{1 + \exp(x_i' \beta_j + \theta_i)} \]

Taking the logit function on both sides gets

\[\logit(\pi_{ij}) = \ln\left(\frac{\pi_{ij}}{1 - \pi_{ij}} \right) = x_i' \beta_j + \theta_i \]

where \(\theta_i \) is the (random) ability parameter generally assumed to follow a normal distribution with zero mean and constant variance: \(\theta_i \sim N(0, \sigma^2) \). Thus,

\[\logit(\pi_{ij}) \sim N(x_i' \beta_j, \sigma^2) \]

In contrast, the extended beta-binomial regression model assumes

\[\pi_i \sim B(\rho_i, \gamma) \text{ with } \rho_i = \frac{\exp(x_i' \beta)}{1 + \exp(x_i' \beta)} = \logit^{-1}(x_i' \beta), \text{ or, } \pi_i \sim B(\logit^{-1}(x_i' \beta), \gamma). \]
Clearly, the two models are similar in that both make distributional assumptions about the Bernoulli parameter π_{ij}. They are different in the specification of the assumptions. Because of the limited nature of π_{ij} (i.e., $0 \leq \pi_{ij} \leq 1$), while Rasch regression transforms π_{ij} into $\text{logit}(\pi_{ij})$ in order to use the unlimited normal distribution, extended beta-binomial regression directly lets π_i follow the limited beta distribution. By making such assumptions, both models allow conditional heterogeneity across units.

They are, however, different in terms of heterogeneity across items. The Rasch model, by allowing β_j to vary across items, directly introduces within-unit heterogeneity. The extended beta-binomial model does not have such a mechanism, although it does have the flexibility in accommodating within-unit heterogeneity (Lin, Nakamura, Morgan, and Helfer 2014).

Similarities and Differences between Extended Beta-Binomial and Rasch Regressions

<table>
<thead>
<tr>
<th></th>
<th>Extended Beta-Binomial</th>
<th>Rasch Latent Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification of π_{ij}</td>
<td>$\pi_i \sim \text{B}(\text{logit}^{-1}(x_i'\beta), \gamma)$</td>
<td>$\text{logit}(\pi_{ij}) \sim \text{N}(x_i'\beta_j, \sigma^2)$</td>
</tr>
<tr>
<td>Heterogeneity across Units</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Heterogeneity across Items</td>
<td>Flexible</td>
<td>Yes</td>
</tr>
<tr>
<td>Inter-Item Correlation in Data</td>
<td>Yes (+/−)</td>
<td>Yes (+)</td>
</tr>
<tr>
<td>Subsuming Binomial Model?</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Special Case to the Other?</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

The Monte-Carlo simulation results shown in Tables 1 and 2 indicate:

- Both beta-binomial regression and Rasch regression can rather accurately estimate parameters when applied to data generated from their own DGPs.
- Both models can produce biased and inefficient estimates when applied to data generated from each other, but the problems caused by fitting data to the wrong model is more severe for Rasch regression than for extended beta-binomial regression.
- Using IRT models for event count data is not always a good strategy.
Table 1. Monte Carlo Simulation: Beta-Binomial DGP

<table>
<thead>
<tr>
<th></th>
<th>10 Items</th>
<th>5 Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta-Binomial Regression Estimates</td>
<td>Beta-Binomial Regression Estimates</td>
</tr>
<tr>
<td>Mean</td>
<td>β_1</td>
<td>β_2</td>
</tr>
<tr>
<td>n=200</td>
<td>-0.204</td>
<td>0.304</td>
</tr>
<tr>
<td>n=600</td>
<td>-0.202</td>
<td>0.297</td>
</tr>
<tr>
<td>n=1000</td>
<td>-0.199</td>
<td>0.302</td>
</tr>
<tr>
<td>RMSE</td>
<td>β_1</td>
<td>β_2</td>
</tr>
<tr>
<td>n=200</td>
<td>0.074</td>
<td>0.071</td>
</tr>
<tr>
<td>n=600</td>
<td>0.040</td>
<td>0.042</td>
</tr>
<tr>
<td>n=1000</td>
<td>0.032</td>
<td>0.032</td>
</tr>
<tr>
<td></td>
<td>Latent Rasch Regression Estimates</td>
<td>Latent Rasch Regression Estimates</td>
</tr>
<tr>
<td>Mean</td>
<td>β_1</td>
<td>β_2</td>
</tr>
<tr>
<td>n=200</td>
<td>-0.313</td>
<td>0.463</td>
</tr>
<tr>
<td>n=600</td>
<td>-0.308</td>
<td>0.453</td>
</tr>
<tr>
<td>n=1000</td>
<td>-0.304</td>
<td>0.460</td>
</tr>
<tr>
<td>RMSE</td>
<td>β_1</td>
<td>β_2</td>
</tr>
<tr>
<td>n=200</td>
<td>0.147</td>
<td>0.177</td>
</tr>
<tr>
<td>n=600</td>
<td>0.114</td>
<td>0.154</td>
</tr>
<tr>
<td>n=1000</td>
<td>0.105</td>
<td>0.160</td>
</tr>
</tbody>
</table>

Note: True parameter values: $\beta_1 = -0.2$, $\beta_2 = 0.3$
Table 2. Monte Carlo Simulation: Item Response Theory DGP

<table>
<thead>
<tr>
<th></th>
<th>10 Items</th>
<th>5 Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta-Binomial Regression Estimates</td>
<td>Beta-Binomial Regression Estimates</td>
</tr>
<tr>
<td>Mean</td>
<td>β_1</td>
<td>β_2</td>
</tr>
<tr>
<td>n=200</td>
<td>-0.147</td>
<td>0.221</td>
</tr>
<tr>
<td>n=600</td>
<td>-0.147</td>
<td>0.221</td>
</tr>
<tr>
<td>n=1000</td>
<td>-0.146</td>
<td>0.222</td>
</tr>
<tr>
<td>RMSE</td>
<td>β_1</td>
<td>β_2</td>
</tr>
<tr>
<td>n=200</td>
<td>0.069</td>
<td>0.088</td>
</tr>
<tr>
<td>n=600</td>
<td>0.056</td>
<td>0.080</td>
</tr>
<tr>
<td>n=1000</td>
<td>0.054</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td>Latent Rasch Regression Estimates</td>
<td>Latent Rasch Regression Estimates</td>
</tr>
<tr>
<td>Mean</td>
<td>β_1</td>
<td>β_2</td>
</tr>
<tr>
<td>n=200</td>
<td>-0.202</td>
<td>0.302</td>
</tr>
<tr>
<td>n=600</td>
<td>-0.201</td>
<td>0.302</td>
</tr>
<tr>
<td>n=1000</td>
<td>-0.200</td>
<td>0.302</td>
</tr>
<tr>
<td>RMSE</td>
<td>β_1</td>
<td>β_2</td>
</tr>
<tr>
<td>n=200</td>
<td>0.072</td>
<td>0.074</td>
</tr>
<tr>
<td>n=600</td>
<td>0.043</td>
<td>0.041</td>
</tr>
<tr>
<td>n=1000</td>
<td>0.031</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Note: True parameter values: $\beta_1 = -0.2, \beta_2 = 0.3$